11 research outputs found

    Shaping embryonic stem cell self-renewal and differentiation

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Biology, 2012.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student submitted PDF version of thesis.Includes bibliographical references (p. 125-142).The objective of this work is to obtain an in depth understanding of how embryonic stem cell-secreted signals contribute to their identity. We analyze the contribution of broad and specific signals present in the cell-secreted microenvironment using techniques that can easily be applied to studies of other cell types and signaling systems. Determining the effects of external signals produced endogenously by stem cells is important for understanding fundamental biological processes regarding cell communication and for implementing more sophisticated manipulation protocols for future clinical applications. Harnessing the ability of stem cells to generate specific cell types is necessary for many regenerative medicine and tissue engineering applications and would be enhanced by a more thorough understanding of the signaling pathways required to maintain stem cell self-renewal and to initiate an exit from the self-renewing state. In this thesis, we describe work showing that mouse embryonic stem cell (mESC)-secreted signals are required to maintain self-renewal, as cells enter a primed, epiblast-like state of early differentiation when microfluidic perfusion is used to deplete soluble cell-secreted signals. We show that this phenotypic change can be used to our advantage for directed differentiation, and further demonstrate that remodeling the endogenous extracellular matrix halts the exit from the self-renewing state that occurs in mESCs growing under perfusion. Matrix remodeling is then shown to be both necessary and sufficient for maintaining mouse embryonic stem cell self-renewal in the absence of other external cues, and we demonstrate a method for assessing the relative contributions of soluble versus matrix-based cues. Together, our data indicate the importance of mESC-secreted factors in contributing to cell survival, self-renewal, and differentiation in normal cultures. Beyond furthering our understanding of intrinsic signaling mechanisms, this information can be used to devise better culture systems for directed differentiation of pluripotent cells. In addition, the techniques developed and implemented here for assessing the contributions of endogenous signals can all be applied generally to any adherent cell type for studies of how the cell-secreted microenvironment contributes to signaling processes and ultimately to cell phenotype.by Laralynne M. Przybyla.Ph.D

    Tissue Mechanics Orchestrate Wnt-Dependent Human Embryonic Stem Cell Differentiation

    No full text
    Regenerative medicine is predicated on understanding the mechanisms regulating development and applying these conditions to direct stem cell fate. Embryogenesis is guided by cell-cell and cell-matrix interactions, but it is unclear how these physical cues influence stem cells in culture. We used human embryonic stem cells (hESCs) to examine whether mechanical features of the extracellular microenvironment could differentially modulate mesoderm specification. We found that, on a hydrogel-based compliant matrix, hESCs accumulate β-catenin at cell-cell adhesions and show enhanced Wnt-dependent mesoderm differentiation. Mechanistically, Src-driven ubiquitination of E-cadherin by Cbl-like ubiquitin ligase releases P120-catenin to facilitate transcriptional activity of β-catenin, which initiates and reinforces mesoderm differentiation. By contrast, on a stiff hydrogel matrix, hESCs show elevated integrin-dependent GSK3 and Src activity that promotes β-catenin degradation and inhibits differentiation. Thus, we found that mechanical features of the microenvironmental matrix influence tissue-specific differentiation of hESCs by altering the cellular response to morphogens

    Matrix Remodeling Maintains Embryonic Stem Cell Self-Renewal by Activating Stat3

    No full text
    While a variety of natural and synthetic matrices have been used to influence embryonic stem cell (ESC) self-renewal or differentiation, and ESCs also deposit a rich matrix of their own, the mechanisms behind how extracellular matrix affects cell fate are largely unexplored. The ESC matrix is continuously remodeled by matrix metalloproteinases (MMPs), a process that we find is enhanced by the presence of mouse embryonic fibroblast feeders in a paracrine manner. Matrix remodeling by MMPs aids in the self-renewal of ESCs, as inhibition of MMPs inhibits the ability of ESCs to self-renew. We also find that addition of the interstitial collagenase MMP1 is sufficient to maintain long-term leukemia inhibitory factor (LIF)-independent mouse ESC (mESC) self-renewal in a dose-dependent manner. This remarkable ability is due to the presence of endogenously produced self-renewal-inducing signals, including the LIF-family ligand ciliary neurotrophic factor, that are normally trapped within the ECM and become exposed upon MMP-induced matrix remodeling to signal through JAK and Stat3. These results uncover a new role for feeder cells in maintaining self-renewal and show that mESCs normally produce sufficient levels of autocrine-acting pro-self-renewal ligands.National Institutes of Health (U.S.) (Grant EB007278)Singapore-MIT AllianceNational Institutes of Health (U.S.) (Grant HD 045022

    A tension-mediated glycocalyx-integrin feedback loop promotes mesenchymal-like glioblastoma

    No full text
    Glioblastoma multiforme (GBMs) are recurrent lethal brain tumours. Recurrent GBMs often exhibit mesenchymal, stem-like phenotypes that could explain their resistance to therapy. Analyses revealed that recurrent GBMs have increased tension and express high levels of glycoproteins that increase the bulkiness of the glycocalyx. Studies showed that a bulky glycocalyx potentiates integrin mechanosignalling and tissue tension and promotes a mesenchymal, stem-like phenotype in GBMs. Gain- and loss-of-function studies implicated integrin mechanosignalling as an inducer of GBM growth, survival, invasion and treatment resistance, and a mesenchymal, stem-like phenotype. Mesenchymal-like GBMs were highly contractile and expressed elevated levels of glycoproteins that expanded their glycocalyx, and they were surrounded by a stiff extracellular matrix that potentiated integrin mechanosignalling. Our findings suggest that there is a dynamic and reciprocal link between integrin mechanosignalling and a bulky glycocalyx, implying a causal link towards a mesenchymal, stem-like phenotype in GBMs. Strategies to ameliorate GBM tissue tension offer a therapeutic approach to reduce mortality due to GBM.status: publishe
    corecore